- Vapor Pressure

- Which of the following would have a higher vapor pressure? Explain your answer.

- Freezing Point and Boiling Point
- 31.65 g of sodium chloride is added to 220.0 g of water at $34^{\circ} \mathrm{C}$. How will this affect the freezing point and boiling point of the water? (Given: K_{f} water $=1.86{ }^{\circ} \mathrm{C} \mathrm{kg} / \mathrm{mol}$; Kb water $=0.512{ }^{\circ} \mathrm{C} \mathrm{kg} / \mathrm{mol}$)
- Osmotic Pressure
- Which of the following would have a higher osmotic pressure? Explain your answer.

Colligative Properties

- \qquad - properties of solutions that
depend on the concentration of a solute but not its identity
- Vapor Pressure
- As the concentration of the solute is \qquad , the vapor pressure of the solvent is \qquad —.
- Freezing Point
- As the concentration of the solute is \qquad the freezing point of the solvent is \qquad _.
- We can calculate the change in freezing point that will result using the formula:

$$
\Delta T_{f}=K_{f} \times m \times i
$$

- $\Delta T_{f}=$ \qquad
- $K_{f}=$ \qquad
- $m=$ \qquad
- $i=$ \qquad
- Boiling Point
- As the concentration of the solute is \qquad , the boiling point of the solvent is \qquad —.
- We can calculate the change in freezing point that will result using the formula:

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{mxi}
$$

- $\Delta T_{b}=$ \qquad
- $K_{b}=$ \qquad
- Osmotic Pressure
- As the concentration of the solute is \qquad the
osmotic pressure required to overcome osmosis \qquad

