Name:
Grade/Class: \qquad

Diluting Aqueous Solutions

Dilutions

We know how to prepare an aqueous solution by mixing a solute with water and how to calculate the concentration of that solution, but what if you want to make a solution of a specific molarity starting from a stock solution? A stock solution is a large volume of a solution at a standardized concentration. So what if you have a 6.0 M solution of $\mathrm{HCl}(6$ $\mathrm{mol} / \mathrm{liter}$) and you want to produce a 3.0 M solution of HCl ? You can use the following formula:

| $\mathbf{M}_{\mathbf{1}} \times \mathbf{V}_{\mathbf{1}}=\mathbf{M}_{\mathbf{2}} \times \mathbf{V}_{\mathbf{2}}$ | $\begin{array}{l}\text { Where: } \\ \\ \\ \\ \mathrm{M} 1=\text { initial molarity }\end{array}$ | $\mathrm{V} 1=$ initial molarity | $\mathrm{V} 2=$ final volume |
| :--- | :--- | :--- | :--- |\quad (in liters)

Consider this problem: If you begin with 6.0 M HCl and want to produce 150 ml of 3.0 M HCl , then how much of the stock solution will you need to dissolve in water? All you have to do is plug the numbers in.

$$
\begin{gathered}
\mathbf{M}_{\mathbf{1}} \mathbf{x} \mathbf{V}_{\mathbf{1}}=\mathbf{M}_{\mathbf{2}} \times \mathbf{V}_{\mathbf{2}} \\
6 \mathrm{M} \times \mathrm{V}_{1}=3 \mathrm{M} \times 0.150 \mathrm{~L} \\
\mathrm{~V}_{1}=(3 \mathrm{M} \times 0.150 \mathrm{~L}) / 6 \mathrm{M} \\
\mathrm{~V}_{1}=0.075 \mathrm{~L}
\end{gathered}
$$

Now you take the Initial Volume of Stock Solution and add enough water to reach the final volume that you want. Therefore, you would need to mix $75 \mathrm{ml}(0.075 \mathrm{~L})$ of 6 M $\underline{\mathrm{HCl} \text { with } 75 \mathrm{ml} \text { of } \mathrm{H}_{2} \underline{\mathrm{O}} \text { in order to produce } 150 \mathrm{ml} \text { of a } 3 \mathrm{M} \mathrm{HCl} \text { solution. }}$

1) If I dilute 250 mL of 0.10 M lithium acetate solution to a volume of 750 mL , what will the concentration of this solution be?
2) If I dilute 125 mL of a 0.15 M NaOH solution to a volume of 150 . mL , what will the molarity of the diluted solution be?
3) If I have 340 mL of a 0.5 M NaBr solution, what will the concentration be if I add 560 . mL more water to it?
4) To what volume would I need to add water to the evaporated solution in problem 3 to get a solution with a concentration of 0.25 M ?
5) If I leave 750 mL of 0.50 M sodium chloride solution uncovered on a windowsill and 150 mL of the solvent evaporates, what will the new concentration of the sodium chloride solution be?
6) If I add water to $100 . \mathrm{mL}$ of a 0.15 M NaOH solution until the final volume is $150 . \mathrm{mL}$, what will the molarity of the diluted solution be?
7) What volume of 0.050 M HCl solution can be made by diluting $250 . \mathrm{mL}$ of 10.0 M HCl?
